Azure API Load-Balancing
Use this if you're trying to load-balance across multiple Azure/OpenAI deployments.
Router
prevents failed requests, by picking the deployment which is below rate-limit and has the least amount of tokens used.
In production, Router connects to a Redis Cache to track usage across multiple deployments.
Quick Start​
pip install litellm
from litellm import Router
model_list = [{ # list of model deployments
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
}, {
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
}, {
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
}]
router = Router(model_list=model_list)
# openai.ChatCompletion.create replacement
response = router.completion(model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}]
print(response)
Redis Queue​
In production, we use Redis to track usage across multiple Azure deployments.
router = Router(model_list=model_list,
redis_host=os.getenv("REDIS_HOST"),
redis_password=os.getenv("REDIS_PASSWORD"),
redis_port=os.getenv("REDIS_PORT"))
print(response)
Handle Multiple Azure Deployments via OpenAI Proxy Server​
1. Clone repo​
git clone https://github.com/BerriAI/litellm.git
2. Add Azure/OpenAI deployments to secrets_template.toml
​
[model."gpt-3.5-turbo"] # model name passed in /chat/completion call or `litellm --model gpt-3.5-turbo`
model_list = [{ # list of model deployments
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "my-azure-api-key-1",
"api_version": "my-azure-api-version-1",
"api_base": "my-azure-api-base-1"
},
"tpm": 240000,
"rpm": 1800
}, {
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": "sk-...",
},
"tpm": 1000000,
"rpm": 9000
}]
3. Run with Docker Image​
docker build -t litellm . && docker run -p 8000:8000 litellm
## OpenAI Compatible Endpoint at: http://0.0.0.0:8000
replace openai base
import openai
openai.api_base = "http://0.0.0.0:8000"
print(openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role":"user", "content":"Hey!"}]))