Sentry Tutorial
Sentry provides error monitoring for production. LiteLLM can add breadcrumbs and send exceptions to Sentry with this integration
This works on normal, async and streaming completion calls
usage​
import litellm
from litellm import completion
litellm.set_verbose = True
litellm.input_callback=["sentry"] # adds sentry breadcrumbing
litellm.failure_callback=["sentry"] # [OPTIONAL] if you want litellm to capture -> send exception to sentry
import os
os.environ["SENTRY_API_URL"] = "your-sentry-url"
os.environ["OPENAI_API_KEY"] = "your-openai-key"
# set bad key to trigger error
api_key="bad-key"
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey!"}], stream=True, api_key=api_key)
print(response)
Let us know if you need any additional options from Sentry.